Bounded width and congruence distributivity

Catarina Carvalho
Víctor Dalmau
Petar Marković
Miklós Maróti
Durham University
Universitat Pompeu Fabra
University of Novi Sad
University of Szeged

AAA76, Linz, May 22-25, 2008

Constraint satisfaction problem (CSP)

Definition. For a finite relational structure $\mathbb{B}=(B ; \mathcal{R})$ we define

$$
\operatorname{CSP}(\mathbb{B})=\{\mathbb{A} \mid \mathbb{A} \rightarrow \mathbb{B}\}
$$

- $\operatorname{CSP}\left(\Omega_{0}\right)$ is the class of three-colorable (directed) graphs.
- $\operatorname{CSP}(\boldsymbol{\emptyset})$ is the class of (directed) bipartite graphs.
- The membership problem for $\operatorname{CSP}(\mathbb{B})$ is always decidable in nondeterministic polynomial time (NP).

Dichotomy Conjecture (Veder, Vardi, 1999). For every finite structure \mathbb{B} the membership problem for $\operatorname{CSP}(\mathbb{B})$ is either in \mathbf{P} or $\mathbf{N P}$-complete.
Theorem. The dichotomy conjecture holds if

- $|B|=2$ (Schaefer, 1978),
- \mathbb{B} is an undirected graph (Hell, Nešetřil, 1990),
- $|B|=3$ (Bulatov, 2006).

CSP REDUCTIONS

- If $\mathbb{B} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$, then $\operatorname{CSP}(\mathbb{B})=\operatorname{CSP}(\mathbb{C})$.
- We may assume that \mathbb{B} is a core, i.e., every endomorphism is an automorphism.
- We may assume that every unary constant relation $\varrho_{b}=\{b\} \subseteq B$ is in \mathbb{B}.
- We may assume that \mathbb{B} is a directed graph with constants.

Definition. $p: B^{n} \rightarrow B$ is a polymorphism of \mathbb{B} if every relation of \mathbb{B} is closed under p. Example:

- if $\left\langle x_{1}, y_{1}\right\rangle, \ldots,\left\langle x_{n}, y_{n}\right\rangle \in R$ then $\left\langle p\left(x_{1}, \ldots, x_{n}\right), p\left(y_{1}, \ldots, y_{n}\right)\right\rangle \in R$,
- for ϱ_{b} this means that $p(b, \ldots, b)=b$.

$$
\operatorname{Pol}(\mathbb{B})=\left\{p: B^{n} \rightarrow B \mid p \text { is a polymorphism of } \mathbb{B}\right\}
$$

- $\operatorname{Pol}(\mathbb{B})$ is a clone; it is idempotent if \mathbb{B} has the unary constant relations.
- If $\operatorname{Pol}(\mathbb{B}) \subseteq \operatorname{Pol}(\mathbb{C})$, then $\operatorname{CSP}(\mathbb{C})$ is polynomial time reducible to $\operatorname{CSP}(\mathbb{B})$.

Nice Polymorphisms

Theorem. $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P} if $\operatorname{Pol}(\mathbb{B})$ contains one of the following:

- a semilattice operation (Jevons et. al.)
- a near-unanimity operation

$$
p(y, x, \ldots, x) \approx p(x, y, x, \ldots, x) \approx \cdots \approx p(x, \ldots, x, y) \approx x
$$

- a totally symmetric idempotent operation (Dalmau, Pearson, 1999),
- a Mal'tsev operation: $p(x, y, y) \approx p(y, y, x) \approx x$ (Bulatov, 2002; Dalmau, 2004),
- Generalized majority-minority operation (Dalmau, 2005),
- 2-semilattices (and conservative algebras) (Bulatov, 2006),
- Edge operations (Idziak, Marković, McKenzie, Valeriote, Willard, 2007),
- CD(3) Jónsson operations (Kiss, Valeriote, 2007),
- CD(4) Jónsson operations (Carvalho, Dalmau, Marković, Maróti).

WEAK NEAR-UNANIMITY

Theorem (Larose, Zádori, 2006). If \mathbb{B} is a core and $\operatorname{Pol}(\mathbb{B})$ does not contain a Taylor operation then $\operatorname{CSP}(\mathbb{B})$ is NP-complete.

Theorem (McKenzie, Maróti, 2006). For a locally finite variety \mathcal{V} the TFAE:
(1) \mathcal{V} omits type $\mathbf{1}$,
(2) \mathcal{V} has a Taylor term,
(3) \mathcal{V} has a weak near-unanimity operation:

$$
p(y, x, \ldots, x) \approx \cdots \approx p(x, \ldots, x, y) \quad \text { and } \quad p(x, \ldots, x) \approx x
$$

Corollary. To prove the dichotomy conjecture it is enough to show that if a core directed graph \mathbb{B} has a weak near-unanimity polymorphism then $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P}.

Theorem (Barto, Kozik, Niven, 2007). The dichotomy conjecture holds for directed graphs without sources and sinks. If \mathbb{B} has a weak near-unanimity polymorphism, then the core of \mathbb{B} is a disjoint union of circles.

LOCAL CONSISTENCY: (j, k)-ALGORITHM

Definition. Let $1 \leq j \leq k$ be integers, and \mathbb{A}, \mathbb{B} be similar relational structures.
Initial step: Put $\mathcal{H}^{(0)}=\bigcup_{\substack{K \subseteq A,|K| \leq k}} \mathcal{H}_{K}^{(0)}, \quad$ where $\quad \mathcal{H}_{K}^{(0)}=\operatorname{Hom}\left(\left.\mathbb{A}\right|_{K}, \mathbb{B}\right)$.
Iteration step: Let $f: A \rightarrow B$ be a partial map, $J \subseteq K,|J| \leq j$ and $|K| \leq k$. If one of the following implications does not hold
restriction: $\left.f \in \mathcal{H}_{K}^{(i)} \Longrightarrow f\right|_{J} \in \mathcal{H}_{J}^{(i)}$,
extension: $f \in \mathcal{H}_{J}^{(i)} \Longrightarrow \exists g \in \mathcal{H}_{K}^{(i)},\left.g\right|_{\operatorname{dom}(f)}=f$
then put $\mathcal{H}^{(i+1)}=\mathcal{H}^{(i)} \backslash\{f\}$.
Output: The output of the (j, k)-consistency algorithm is $\mathcal{H}^{(i)}$ if the iteration step cannot be applied.
Definition. A (j, k)-strategy is a set \mathcal{H} of partial homomorphisms from \mathbb{A} to \mathbb{B} closed under restrictions and extensions.

- The output \mathcal{H} of the (j, k)-algorithm is always a (j, k)-strategy.
(1,2)-ALGORITHM EXAMPLE

Bounded width

- The (j, k)-algorithm runs in polynomial time (in the size of \mathbb{A}).
- The output is independent of the choices made.
- If $\mathcal{H}=\emptyset$, then $\mathbb{A} \nrightarrow \mathbb{B}$.

Definition. The relational structure \mathbb{B} has
(1) width (j, k) if $\operatorname{CSP}(\mathbb{B})=\{\mathbb{A} \mid \exists \mathcal{H} \neq \emptyset(j, k)$-strategy for \mathbb{A} and $\mathbb{B}\}$,
(2) total variable width k if it has width $(k-1, k)$,
(3) "IDB" width j if it has width (j, k) for some integer k,
(4) bounded width if it has width (j, k) for some j and k.

Lemma. If \mathbb{B} has bounded width, then $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P}, but not vice verse. Theorem (Feder, Vardi, 1998). TFAE:
(1) \mathbb{B} has width (j, k),
(2) The complement of $\operatorname{CSP}(\mathbb{B})$ is definable in (j, k)-Datalog,
(3) \mathbb{B} has (j, k)-tree duality.

Bounded width examples

Theorem (Feder, Vardi; Dalmau, Pearson). A finite relational structure \mathbb{B} has width 1 if and only if it has a totally symmetric idempotent operation.

Theorem (Feder, Vardi). If \mathbb{B} has a $j+1$-ary near-unanimity polymorphism, then \mathbb{B} has width j.

Example. The structure $\mathbb{B}=(\{0,1\} ; \varrho, \sigma), \varrho=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 1,0\rangle\}$, $\sigma=\{\langle 0,1\rangle,\langle 1,0\rangle,\langle 0,0\rangle\}$ has width $(2,3)$ but does not have width 1 .

- $\operatorname{Pol}(\mathbb{B})$ is generated by the ternary near-unanimity operation.
- $\operatorname{Pol}(\mathbb{B})$ contains no essentially binary operation.
- $\operatorname{Pol}(\mathbb{B})$ does not have a totally symmetric operation p because otherwise $q(x, y)=p(x, \ldots, x, y)$ would be a binary commutative operation.

Theorem (Larose, Zádori). If \mathbb{B} has bounded width, then the variety generated by the algebra $\mathbf{B}=(B ; \operatorname{Pol}(\mathbb{B}))$ omits types $\mathbf{1}$ and $\mathbf{2}$, i.e., it is congruence meet-semidistributive.

Main Result

Theorem (Jónsson, 1967). An algebra B lies in a congruence distributive variety iff there exists an integer $n>0$ and ternary terms p_{0}, \ldots, p_{n} that satisfy the following identities:

$$
\begin{array}{rlr}
p_{0}(x, y, z) \approx x \\
p_{n}(x, y, z) \approx z, & \\
p_{i}(x, y, x) \approx x & & \text { for all } i, \\
p_{i}(x, x, y) \approx p_{i+1}(x, x, y) & \text { for all even } i, \\
p_{i}(x, y, y) \approx p_{i+1}(x, y, y) & & \text { for all odd } i .
\end{array}
$$

Theorem. If \mathbb{B} has polymorphisms p_{0}, \ldots, p_{4} satisfying the above identities then \mathbb{B} has width $(k-1, k)$ where k is the maximum of 3 and the largest of the arities of the relations.

- $\mathrm{CD}(2) \Longrightarrow$ majority operation
- CD(3): Kiss and Valeriote proved slightly more: for them k depends only on the size of \mathbb{B}, and not on the arities of relations (relational width).

OUTLINE OF PROOF

Put $\mathbf{B}=\left(B ; p_{1}, p_{2}, p_{3}\right)$. The variety $\mathcal{V}=\operatorname{HSP}(\mathbf{B})$ satisfies the identities:

$$
\begin{array}{rlrl}
x & \approx p_{1}(x, x, y), & & p_{1}(x, y, x) \approx x, \\
p_{1}(x, y, y) & \approx p_{2}(x, y, y), & p_{2}(x, y, x) \approx x, \\
p_{2}(x, x, y) & \approx p_{3}(x, x, y), & & p_{3}(x, y, x) \approx x, \\
p_{3}(x, y, y) & \approx y . &
\end{array}
$$

- Assume that \mathbb{B} is a directed graph with constants, so $k=3$.
- Take a nonempty $(2,3)$-strategy \mathcal{H} for \mathbb{A} and \mathbb{B}.
- We need to find a map $f: A \rightarrow B$ such that $\left.f\right|_{\{x, y\}} \in \mathcal{H}_{\{x, y\}}$ for all $x, y \in A$.
- If \mathcal{H} is trivial, i.e. $\left|\mathcal{H}_{x}\right|=1$ for all $x \in A$, then \mathcal{H} uniquely determines f.
- If \mathcal{H} is not trivial, then we construct a proper substrategy $\mathcal{H}^{\prime} \subset \mathcal{H}$.
- In finitely many steps the algorithm must stop (we do not need polynomial time here)

Reduction to ideal free algebras

Definition. Let $\mathbf{C} \leq \mathbf{D} \in \mathcal{V}$.

- C is a left-ideal of \mathbf{D}, if $p_{2}(d, c, c) \in C$ for all $c \in C$ and $d \in D$.
- \mathbf{C} is a right-ideal of \mathbf{D}, if $p_{2}(c, c, d) \in C$ for all $c \in C$ and $d \in D$.

Lemma (Kiss, Valeriote). If \mathcal{H} is a nonempty ($k-1, k$)-strategy, then it has a nonempty $(k-1, k)$-substrategy \mathcal{H}^{\prime} such that the algebras $\mathcal{H}_{x}^{\prime} \in \mathcal{V}$ have no proper left or right-ideals.

Proof. Assume that $\mathbf{C}<\mathcal{H}_{x}$ is a proper left-ideal for some $x \in A$.

$$
\mathcal{H}^{\prime}=\left\{f \in \mathcal{H}\left|\forall y, z \in \operatorname{dom}(f) \exists f^{\prime} \in \mathcal{H}_{\{x, y, z\}} f^{\prime}\right|_{\{y, z\}}=\left.f\right|_{\{y, z\}}, f^{\prime}(x) \in C\right\} .
$$

Easy cases: restriction and extension of $f \in \mathcal{H}_{\{y, z\}}^{\prime}$ to $g \in \mathcal{H}_{\{x, y, z\}}^{\prime}$.
Interesting case: extension of $f \in \mathcal{H}_{\{y, z\}}^{\prime}$ to $g \in \mathcal{H}_{\{y, z, u\}}^{\prime}$.

| x | y | z | u |
| :---: | :---: | :---: | :---: | :---: |
| - | b | c | d_{1} |
| a | - | c | d_{2} |
| a | b | - | d_{3} |

	x	y	z	u
	-	b	c	d_{1}

	-	$?$	c	d_{2}
	-	b	$?$	d_{3}
$p_{1}:$	-	b	c	d

	x	y	z	u
	$?$	-	c	d_{1}
	a	-	c	d_{2}
	a	-	$?$	d_{3}
$p_{1}:$	a_{1}	-	c	d

	x	y	z	u
	$?$	b	-	d_{1}
	a	$?$	-	d_{2}
	a	b	-	d_{3}
$p_{1}:$	a_{2}	b	-	d

Reduction to congruence classes

Lemma. Let \mathcal{H} be a nontrivial $(k-1, k)$-strategy. Then there exists a nonempty set $X \subseteq A$ and maximal congruences $\vartheta_{x} \in \operatorname{Con}\left(\mathcal{H}_{x}\right)$ for all $x \in X$ such that
(1) $\mathcal{H}_{x, y} /\left(\vartheta_{x} \times \vartheta_{y}\right)$ is the graph of an isomorphism $\tau_{x, y}: \mathcal{H}_{x} / \vartheta_{x} \rightarrow \mathcal{H}_{y} / \vartheta_{y}$ for all $x, y \in X$ of elements,
(2) $\tau_{x, y} \circ \tau_{y, z}=\tau_{x, z}$ for all $x, y, z \in X$,
(3) $\mathcal{H}_{x, y} /\left(\vartheta_{x} \times 0\right)=\left(\mathcal{H}_{x} / \vartheta_{x}\right) \times \mathcal{H}_{y}$ for any $x \in X$ and $y \in A \backslash X$.

Key step of the proof:

- $x \in X, \mathbf{U}=\mathcal{H}_{x} / \vartheta_{x}$ simple, has no proper ideal,
- $y \notin X, \mathbf{V}=\mathcal{H}_{y}$ has no proper ideal,
- $\mathbf{R}=\mathcal{H}_{x, y} /\left(\vartheta_{x} \times 0\right)$ is a subdirect product of \mathbf{U} and \mathbf{V},
- \mathbf{R} is not the graph of a homomorphism of \mathbf{V} onto \mathbf{U},

In this case $\mathbf{R}=\mathbf{U} \times \mathbf{V}$.

Entering the right class of ϑ_{x}

Lemma. For every $x \in X$ choose a congruence class C_{x} of ϑ_{x} such that these correspond to each other via the $\tau_{x, y}$ isomorphism. Let \mathcal{H}^{\prime} be the set of all functions $f \in \mathcal{H}$ that satisfy the following conditions:
(1) $f(x) \in C_{x}$ for all $x \in X \cap \operatorname{dom}(f)$,
(2) f generates a minimal right-ideal in $\mathcal{H}_{\text {dom }(f)}$.

Then \mathcal{H}^{\prime} is a $(k-1, k)$-strategy.
Not hard: functions satisfying (2) are always form a strategy.
Key step of the proof:

- $x \in X, \mathbf{U}=\mathcal{H}_{x} / \vartheta_{x}$ simple, has no proper ideal,
- $y, z \notin X, \mathbf{V}=\mathcal{H}_{y, z}$,
- $\mathbf{R}=\mathcal{H}_{x, y, z} /\left(\vartheta_{x} \times 0 \times 0\right)$ is a subdirect product of \mathbf{U} and \mathbf{V},
- $f \in R$, and f generates a minimal right-ideal $\mathbf{S} \leq \mathbf{R}$,

In this case $\mathbf{S}=\mathbf{U} \times\left.\mathbf{S}\right|_{y, z}$.

Open Problems

- Is it true that every relational structure \mathbb{B} with $\mathrm{CD}(5)$ polymorphisms have bounded width?
- Is it true that every relational structure \mathbb{B} with $\mathrm{CD}(4)$ polymorphisms must have width $(2, k)$ for some k ?
- Is it true that every relational structure \mathbb{B} with a near-unanimity polymorphism (of any arity) must have width $(2, k)$ for some k ?
- Is it true that if \mathbb{B} has bounded width then it has width $(2, k)$ for some k ?
- Classify subdirect products $\mathbf{R} \leq \mathbf{U} \times \mathbf{V}$ of algebras in a congruence distributive variety where \mathbf{U} is simple and \mathbf{R} is not the graph of a homomorphism of \mathbf{V} onto U.
- What is the smallest directed graph that has a weak near-unanimity polymorphism but does not have bounded width?
- Is there a directed graph that has bounded width but does not have a near-unanimity or totally symmetric idempotent polymorphism?

Bounded width and algebras

Definition. A finite algebra \mathbf{B} has bounded width if for every finite set $\mathcal{R} \subset \operatorname{Inv}(\mathbf{B})$ of relations there exist j, k such that $\mathbb{B}=(B ; \mathcal{R})$ has width (j, k).

Theorem (Larose, Zádori, 2006). Every finite algebra in the variety generated by a bounded width algebra has bounded width.

Definition. A finite algebra \mathbf{B} has relational width j if for every finite set $\mathcal{R} \subset \operatorname{Inv}(\mathbf{B})$ of relations $\mathbb{B}=(B ; \mathcal{R})$ has width (j, k) where k is the maximum of $j+1$ and the largest of the arities of the relations.

Definition. A finite algebra $\mathbf{B}=(B ; \mathcal{F})$ has bounded relational width if it has relational width j for some integer j.

- Is it true that if \mathbf{B} has bounded width then it has bounded relational width?
- Is it true that if $\mathbf{B}, \mathbf{C} \in \mathcal{V}$ have bounded relational width, then so does $\mathbf{B} \times \mathbf{C}$?
- Is it true that if \mathbb{B} has width $(2, k)$ then it has width $\left(2, k^{\prime}\right)$ where k^{\prime} is the maximum of 3 and the largest of the arities of the relations.

