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Constraint satisfaction problem (CSP)

Definition. For a finite relational structure B = (B;R) we define

CSP(B) = {A | A→ B }.

• CSP( s ss
�A ) is the class of three-colorable (directed) graphs.

• CSP( ss) is the class of (directed) bipartite graphs.

• The membership problem for CSP(B) is always decidable in nondeterministic
polynomial time (NP).

Dichotomy Conjecture (Veder, Vardi, 1999). For every finite structure B the
membership problem for CSP(B) is either in P or NP-complete.

Theorem. The dichotomy conjecture holds if

• |B| = 2 (Schaefer, 1978),

• B is an undirected graph (Hell, Nešetřil, 1990),

• |B| = 3 (Bulatov, 2006).



CSP reductions

• If B→ C→ B, then CSP(B) = CSP(C).

• We may assume that B is a core, i.e., every endomorphism is an automorphism.

• We may assume that every unary constant relation %b = {b} ⊆ B is in B.

• We may assume that B is a directed graph with constants.

Definition. p : Bn → B is a polymorphism of B if every relation of B is closed
under p. Example:

− if 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R then 〈p(x1, . . . , xn), p(y1, . . . , yn)〉 ∈ R,

− for %b this means that p(b, . . . , b) = b.

Pol(B) = { p : Bn → B | p is a polymorphism of B }.

• Pol(B) is a clone; it is idempotent if B has the unary constant relations.

• If Pol(B) ⊆ Pol(C), then CSP(C) is polynomial time reducible to CSP(B).



Nice polymorphisms

Theorem. CSP(B) is in P if Pol(B) contains one of the following:

• a semilattice operation (Jevons et. al.)

• a near-unanimity operation

p(y, x, . . . , x) ≈ p(x, y, x, . . . , x) ≈ · · · ≈ p(x, . . . , x, y) ≈ x,

• a totally symmetric idempotent operation (Dalmau, Pearson, 1999),

• a Mal’tsev operation: p(x, y, y) ≈ p(y, y, x) ≈ x (Bulatov, 2002; Dalmau, 2004),

• Generalized majority-minority operation (Dalmau, 2005),

• 2-semilattices (and conservative algebras) (Bulatov, 2006),

• Edge operations (Idziak, Marković, McKenzie, Valeriote, Willard, 2007),

• CD(3) Jónsson operations (Kiss, Valeriote, 2007),

• CD(4) Jónsson operations (Carvalho, Dalmau, Marković, Maróti).



Weak near-unanimity

Theorem (Larose, Zádori, 2006). If B is a core and Pol(B) does not contain a
Taylor operation then CSP(B) is NP-complete.

Theorem (McKenzie, Maróti, 2006). For a locally finite variety V the TFAE:

(1) V omits type 1,

(2) V has a Taylor term,

(3) V has a weak near-unanimity operation:

p(y, x, . . . , x) ≈ · · · ≈ p(x, . . . , x, y) and p(x, . . . , x) ≈ x.

Corollary. To prove the dichotomy conjecture it is enough to show that if a core
directed graph B has a weak near-unanimity polymorphism then CSP(B) is in P.

Theorem (Barto, Kozik, Niven, 2007). The dichotomy conjecture holds for
directed graphs without sources and sinks. If B has a weak near-unanimity
polymorphism, then the core of B is a disjoint union of circles.



Local consistency: (j, k)-algorithm

Definition. Let 1 ≤ j ≤ k be integers, and A,B be similar relational structures.

Initial step: Put H(0) =
⋃

K⊆A,
|K|≤k

H(0)
K , where H(0)

K = Hom(A|K ,B).

Iteration step: Let f : A→ B be a partial map, J ⊆ K, |J | ≤ j and |K| ≤ k. If one
of the following implications does not hold

restriction: f ∈ H(i)
K =⇒ f |J ∈ H(i)

J ,

extension: f ∈ H(i)
J =⇒ ∃g ∈ H(i)

K , g|dom(f) = f

then put H(i+1) = H(i) \ {f}.

Output: The output of the (j, k)-consistency algorithm is H(i) if the iteration step
cannot be applied.

Definition. A (j, k)-strategy is a set H of partial homomorphisms from A to B
closed under restrictions and extensions.

• The output H of the (j, k)-algorithm is always a (j, k)-strategy.



(1, 2)-algorithm example



Bounded width

• The (j, k)-algorithm runs in polynomial time (in the size of A).

• The output is independent of the choices made.

• If H = ∅, then A 6→ B.
Definition. The relational structure B has

(1) width (j, k) if CSP(B) = {A | ∃H 6= ∅ (j, k)-strategy for A and B },

(2) total variable width k if it has width (k − 1, k),

(3) “IDB” width j if it has width (j, k) for some integer k,

(4) bounded width if it has width (j, k) for some j and k.

Lemma. If B has bounded width, then CSP(B) is in P, but not vice verse.

Theorem (Feder, Vardi, 1998). TFAE:

(1) B has width (j, k),

(2) The complement of CSP(B) is definable in (j, k)-Datalog,

(3) B has (j, k)-tree duality.



Bounded width examples

Theorem (Feder, Vardi; Dalmau, Pearson). A finite relational structure B has
width 1 if and only if it has a totally symmetric idempotent operation.

Theorem (Feder, Vardi). If B has a j + 1-ary near-unanimity polymorphism, then
B has width j.

Example. The structure B = ({0, 1}; %, σ), % = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉},
σ = {〈0, 1〉, 〈1, 0〉, 〈0, 0〉} has width (2, 3) but does not have width 1.

• Pol(B) is generated by the ternary near-unanimity operation.

• Pol(B) contains no essentially binary operation.

• Pol(B) does not have a totally symmetric operation p because otherwise
q(x, y) = p(x, . . . , x, y) would be a binary commutative operation.

Theorem (Larose, Zádori). If B has bounded width, then the variety generated by
the algebra B = (B; Pol(B)) omits types 1 and 2, i.e., it is congruence
meet-semidistributive.



Main result

Theorem (Jónsson, 1967). An algebra B lies in a congruence distributive variety
iff there exists an integer n > 0 and ternary terms p0, . . . , pn that satisfy the
following identities:

p0(x, y, z) ≈ x,
pn(x, y, z) ≈ z,
pi(x, y, x) ≈ x for all i,

pi(x, x, y) ≈ pi+1(x, x, y) for all even i,

pi(x, y, y) ≈ pi+1(x, y, y) for all odd i.

Theorem. If B has polymorphisms p0, . . . , p4 satisfying the above identities then B
has width (k − 1, k) where k is the maximum of 3 and the largest of the arities of
the relations.

• CD(2) =⇒ majority operation

• CD(3): Kiss and Valeriote proved slightly more: for them k depends only on
the size of B, and not on the arities of relations (relational width).



Outline of proof

Put B = (B; p1, p2, p3). The variety V = HSP(B) satisfies the identities:

x ≈ p1(x, x, y), p1(x, y, x) ≈ x,

p1(x, y, y) ≈ p2(x, y, y), p2(x, y, x) ≈ x,

p2(x, x, y) ≈ p3(x, x, y), p3(x, y, x) ≈ x,

p3(x, y, y) ≈ y.

• Assume that B is a directed graph with constants, so k = 3.

• Take a nonempty (2, 3)-strategy H for A and B.

• We need to find a map f : A→ B such that f |{x,y} ∈ H{x,y} for all x, y ∈ A.

• If H is trivial, i.e. |Hx| = 1 for all x ∈ A, then H uniquely determines f .

• If H is not trivial, then we construct a proper substrategy H′ ⊂ H.

• In finitely many steps the algorithm must stop (we do not need polynomial
time here)



Reduction to ideal free algebras

Definition. Let C ≤ D ∈ V.

• C is a left-ideal of D, if p2(d, c, c) ∈ C for all c ∈ C and d ∈ D.

• C is a right-ideal of D, if p2(c, c, d) ∈ C for all c ∈ C and d ∈ D.

Lemma (Kiss, Valeriote). If H is a nonempty (k − 1, k)-strategy, then it has a
nonempty (k − 1, k)-substrategy H′ such that the algebras H′x ∈ V have no proper
left or right-ideals.

Proof. Assume that C < Hx is a proper left-ideal for some x ∈ A.

H′ = { f ∈ H | ∀y, z ∈ dom(f) ∃f ′ ∈ H{x,y,z} f
′|{y,z} = f |{y,z}, f

′(x) ∈ C }.

Easy cases: restriction and extension of f ∈ H′{y,z} to g ∈ H′{x,y,z}.

Interesting case: extension of f ∈ H′{y,z} to g ∈ H′{y,z,u}.



x y z u

f - b c -

f ′ a b c -

with a ∈ C ?=⇒

x y z u

g - b c d

g′1 a1 - c d

g′2 a2 b - d

g′3 a3 b c -

with a1, a2, a3 ∈ C.

x y z u

- b c d1

a - c d2

a b - d3

x y z u

- b c d1

- ? c d2

- b ? d3

p1 : - b c d

that is d = p1(d1, d2, d3).

x y z u

? - c d1

a - c d2

a - ? d3

p1 : a1 - c d

x y z u

? b - d1

a ? - d2

a b - d3

p1 : a2 b - d



Reduction to congruence classes

Lemma. Let H be a nontrivial (k − 1, k)-strategy. Then there exists a nonempty
set X ⊆ A and maximal congruences ϑx ∈ Con(Hx) for all x ∈ X such that

(1) Hx,y/(ϑx × ϑy) is the graph of an isomorphism τx,y : Hx/ϑx → Hy/ϑy for all
x, y ∈ X of elements,

(2) τx,y ◦ τy,z = τx,z for all x, y, z ∈ X,

(3) Hx,y/(ϑx × 0) = (Hx/ϑx)×Hy for any x ∈ X and y ∈ A \X.

Key step of the proof:

• x ∈ X, U = Hx/ϑx simple, has no proper ideal,

• y 6∈ X, V = Hy has no proper ideal,

• R = Hx,y/(ϑx × 0) is a subdirect product of U and V,

• R is not the graph of a homomorphism of V onto U,

In this case R = U×V.



Entering the right class of ϑx

Lemma. For every x ∈ X choose a congruence class Cx of ϑx such that these
correspond to each other via the τx,y isomorphism. Let H′ be the set of all functions
f ∈ H that satisfy the following conditions:

(1) f(x) ∈ Cx for all x ∈ X ∩ dom(f),

(2) f generates a minimal right-ideal in Hdom(f).

Then H′ is a (k − 1, k)-strategy.

Not hard: functions satisfying (2) are always form a strategy.
Key step of the proof:

• x ∈ X, U = Hx/ϑx simple, has no proper ideal,

• y, z 6∈ X, V = Hy,z,

• R = Hx,y,z/(ϑx × 0× 0) is a subdirect product of U and V,

• f ∈ R, and f generates a minimal right-ideal S ≤ R,

In this case S = U× S|y,z.



Open problems

• Is it true that every relational structure B with CD(5) polymorphisms have
bounded width?

• Is it true that every relational structure B with CD(4) polymorphisms must
have width (2, k) for some k?

• Is it true that every relational structure B with a near-unanimity
polymorphism (of any arity) must have width (2, k) for some k?

• Is it true that if B has bounded width then it has width (2, k) for some k?

• Classify subdirect products R ≤ U×V of algebras in a congruence distributive
variety where U is simple and R is not the graph of a homomorphism of V
onto U.

• What is the smallest directed graph that has a weak near-unanimity
polymorphism but does not have bounded width?

• Is there a directed graph that has bounded width but does not have a
near-unanimity or totally symmetric idempotent polymorphism?



Bounded width and algebras

Definition. A finite algebra B has bounded width if for every finite set
R ⊂ Inv(B) of relations there exist j, k such that B = (B;R) has width (j, k).

Theorem (Larose, Zádori, 2006). Every finite algebra in the variety generated by a
bounded width algebra has bounded width.

Definition. A finite algebra B has relational width j if for every finite set
R ⊂ Inv(B) of relations B = (B;R) has width (j, k) where k is the maximum of
j + 1 and the largest of the arities of the relations.

Definition. A finite algebra B = (B;F) has bounded relational width if it has
relational width j for some integer j.

• Is it true that if B has bounded width then it has bounded relational width?

• Is it true that if B,C ∈ V have bounded relational width, then so does B×C?

• Is it true that if B has width (2, k) then it has width (2, k′) where k′ is the
maximum of 3 and the largest of the arities of the relations.


