BOUNDED WIDTH AND CONGRUENCE DISTRIBUTIVITY

Catarina Carvalho Víctor Dalmau Petar Marković Miklós Maróti Durham University Universitat Pompeu Fabra University of Novi Sad University of Szeged

AAA76, Linz, May 22–25, 2008

CONSTRAINT SATISFACTION PROBLEM (CSP)

Definition. For a finite relational structure $\mathbb{B} = (B; \mathcal{R})$ we define

 $\operatorname{CSP}(\mathbb{B}) = \{ \mathbb{A} \mid \mathbb{A} \to \mathbb{B} \}.$

- $CSP(\bigtriangleup)$ is the class of three-colorable (directed) graphs.
- CSP(1) is the class of (directed) bipartite graphs.
- The membership problem for CSP(B) is always decidable in nondeterministic polynomial time (NP).

Dichotomy Conjecture (Veder, Vardi, 1999). For every finite structure \mathbb{B} the membership problem for $CSP(\mathbb{B})$ is either in **P** or **NP**-complete.

Theorem. The dichotomy conjecture holds if

- |B| = 2 (Schaefer, 1978),
- B is an undirected graph (Hell, Nešetřil, 1990),
- |B| = 3 (Bulatov, 2006).

CSP REDUCTIONS

- If $\mathbb{B} \to \mathbb{C} \to \mathbb{B}$, then $\text{CSP}(\mathbb{B}) = \text{CSP}(\mathbb{C})$.
- We may assume that \mathbb{B} is a **core**, i.e., every endomorphism is an automorphism.
- We may assume that every unary constant relation $\rho_b = \{b\} \subseteq B$ is in \mathbb{B} .
- We may assume that $\mathbb B$ is a directed graph with constants.

Definition. $p: B^n \to B$ is a **polymorphism** of \mathbb{B} if every relation of \mathbb{B} is closed under p. Example:

- if
$$\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle \in R$$
 then $\langle p(x_1, \dots, x_n), p(y_1, \dots, y_n) \rangle \in R$,

- for ρ_b this means that $p(b, \ldots, b) = b$.

 $\operatorname{Pol}(\mathbb{B}) = \{ p : B^n \to B \mid p \text{ is a polymorphism of } \mathbb{B} \}.$

- $Pol(\mathbb{B})$ is a clone; it is idempotent if \mathbb{B} has the unary constant relations.
- If $\operatorname{Pol}(\mathbb{B}) \subseteq \operatorname{Pol}(\mathbb{C})$, then $\operatorname{CSP}(\mathbb{C})$ is polynomial time reducible to $\operatorname{CSP}(\mathbb{B})$.

NICE POLYMORPHISMS

Theorem. $CSP(\mathbb{B})$ is in **P** if $Pol(\mathbb{B})$ contains one of the following:

- a semilattice operation (Jevons et. al.)
- a near-unanimity operation

 $p(y, x, \dots, x) \approx p(x, y, x, \dots, x) \approx \dots \approx p(x, \dots, x, y) \approx x,$

- a totally symmetric idempotent operation (Dalmau, Pearson, 1999),
- a Mal'tsev operation: $p(x, y, y) \approx p(y, y, x) \approx x$ (Bulatov, 2002; Dalmau, 2004),
- Generalized majority-minority operation (Dalmau, 2005),
- 2-semilattices (and conservative algebras) (Bulatov, 2006),
- Edge operations (Idziak, Marković, McKenzie, Valeriote, Willard, 2007),
- CD(3) Jónsson operations (Kiss, Valeriote, 2007),
- CD(4) Jónsson operations (Carvalho, Dalmau, Marković, Maróti).

WEAK NEAR-UNANIMITY

Theorem (Larose, Zádori, 2006). If \mathbb{B} is a core and $Pol(\mathbb{B})$ does not contain a Taylor operation then $CSP(\mathbb{B})$ is **NP**-complete.

Theorem (McKenzie, Maróti, 2006). For a locally finite variety \mathcal{V} the TFAE:

- (1) \mathcal{V} omits type **1**,
- (2) \mathcal{V} has a Taylor term,
- (3) \mathcal{V} has a weak near-unanimity operation:

 $p(y, x, \dots, x) \approx \dots \approx p(x, \dots, x, y)$ and $p(x, \dots, x) \approx x$.

Corollary. To prove the dichotomy conjecture it is enough to show that if a core directed graph \mathbb{B} has a weak near-unanimity polymorphism then $CSP(\mathbb{B})$ is in **P**.

Theorem (Barto, Kozik, Niven, 2007). The dichotomy conjecture holds for directed graphs without sources and sinks. If \mathbb{B} has a weak near-unanimity polymorphism, then the core of \mathbb{B} is a disjoint union of circles.

LOCAL CONSISTENCY: (j, k)-Algorithm

Definition. Let $1 \le j \le k$ be integers, and \mathbb{A}, \mathbb{B} be similar relational structures.

Initial step: Put
$$\mathcal{H}^{(0)} = \bigcup_{\substack{K \subseteq A, \\ |K| \le k}} \mathcal{H}^{(0)}_K$$
, where $\mathcal{H}^{(0)}_K = \operatorname{Hom}(\mathbb{A}|_K, \mathbb{B}).$

Iteration step: Let $f : A \to B$ be a partial map, $J \subseteq K$, $|J| \leq j$ and $|K| \leq k$. If one of the following implications does not hold

restriction:
$$f \in \mathcal{H}_{K}^{(i)} \Longrightarrow f|_{J} \in \mathcal{H}_{J}^{(i)}$$
,
extension: $f \in \mathcal{H}_{J}^{(i)} \Longrightarrow \exists g \in \mathcal{H}_{K}^{(i)}, \ g|_{\operatorname{dom}(f)} = f$
then put $\mathcal{H}^{(i+1)} = \mathcal{H}^{(i)} \setminus \{f\}$.

Output: The output of the (j, k)-consistency algorithm is $\mathcal{H}^{(i)}$ if the iteration step cannot be applied.

Definition. A (j, k)-strategy is a set \mathcal{H} of partial homomorphisms from \mathbb{A} to \mathbb{B} closed under restrictions and extensions.

• The output \mathcal{H} of the (j, k)-algorithm is always a (j, k)-strategy.

(1, 2)-Algorithm example

BOUNDED WIDTH

- The (j, k)-algorithm runs in polynomial time (in the size of A).
- The output is independent of the choices made.
- If $\mathcal{H} = \emptyset$, then $\mathbb{A} \not\to \mathbb{B}$.

Definition. The relational structure \mathbb{B} has

- (1) width (j,k) if $CSP(\mathbb{B}) = \{ \mathbb{A} \mid \exists \mathcal{H} \neq \emptyset \ (j,k) \text{-strategy for } \mathbb{A} \text{ and } \mathbb{B} \},\$
- (2) total variable width k if it has width (k-1,k),
- (3) "IDB" width j if it has width (j, k) for some integer k,
- (4) **bounded width** if it has width (j, k) for some j and k.

Lemma. If \mathbb{B} has bounded width, then $CSP(\mathbb{B})$ is in \mathbf{P} , but not vice verse.

Theorem (Feder, Vardi, 1998). TFAE:

- (1) \mathbb{B} has width (j,k),
- (2) The complement of $CSP(\mathbb{B})$ is definable in (j, k)-Datalog,
- (3) \mathbb{B} has (j, k)-tree duality.

BOUNDED WIDTH EXAMPLES

Theorem (Feder, Vardi; Dalmau, Pearson). A finite relational structure \mathbb{B} has width 1 if and only if it has a totally symmetric idempotent operation.

Theorem (Feder, Vardi). If \mathbb{B} has a j + 1-ary near-unanimity polymorphism, then \mathbb{B} has width j.

Example. The structure $\mathbb{B} = (\{0,1\}; \varrho, \sigma), \ \varrho = \{\langle 0,0 \rangle, \langle 0,1 \rangle, \langle 1,0 \rangle\}, \sigma = \{\langle 0,1 \rangle, \langle 1,0 \rangle, \langle 0,0 \rangle\}$ has width (2,3) but does not have width 1.

- $Pol(\mathbb{B})$ is generated by the ternary near-unanimity operation.
- $Pol(\mathbb{B})$ contains no essentially binary operation.
- Pol(\mathbb{B}) does not have a totally symmetric operation p because otherwise q(x, y) = p(x, ..., x, y) would be a binary commutative operation.

Theorem (Larose, Zádori). If \mathbb{B} has bounded width, then the variety generated by the algebra $\mathbf{B} = (B; \text{Pol}(\mathbb{B}))$ omits types 1 and 2, i.e., it is congruence meet-semidistributive.

MAIN RESULT

Theorem (Jónsson, 1967). An algebra **B** lies in a congruence distributive variety iff there exists an integer n > 0 and ternary terms p_0, \ldots, p_n that satisfy the following identities:

 $\begin{array}{ll} p_0(x,y,z) \approx x, \\ p_n(x,y,z) \approx z, \\ p_i(x,y,x) \approx x & for \ all \ i, \\ p_i(x,x,y) \approx p_{i+1}(x,x,y) & for \ all \ even \ i, \\ p_i(x,y,y) \approx p_{i+1}(x,y,y) & for \ all \ odd \ i. \end{array}$

Theorem. If \mathbb{B} has polymorphisms p_0, \ldots, p_4 satisfying the above identities then \mathbb{B} has width (k - 1, k) where k is the maximum of 3 and the largest of the arities of the relations.

- $CD(2) \implies$ majority operation
- CD(3): Kiss and Valeriote proved slightly more: for them k depends only on the size of \mathbb{B} , and not on the arities of relations (relational width).

OUTLINE OF PROOF

Put $\mathbf{B} = (B; p_1, p_2, p_3)$. The variety $\mathcal{V} = \text{HSP}(\mathbf{B})$ satisfies the identities:

$$\begin{aligned} x &\approx p_1(x, x, y), & p_1(x, y, x) \approx x, \\ p_1(x, y, y) &\approx p_2(x, y, y), & p_2(x, y, x) \approx x, \\ p_2(x, x, y) &\approx p_3(x, x, y), & p_3(x, y, x) \approx x, \\ p_3(x, y, y) &\approx y. \end{aligned}$$

- Assume that \mathbb{B} is a directed graph with constants, so k = 3.
- Take a nonempty (2,3)-strategy \mathcal{H} for \mathbb{A} and \mathbb{B} .
- We need to find a map $f: A \to B$ such that $f|_{\{x,y\}} \in \mathcal{H}_{\{x,y\}}$ for all $x, y \in A$.
- If \mathcal{H} is **trivial**, i.e. $|\mathcal{H}_x| = 1$ for all $x \in A$, then \mathcal{H} uniquely determines f.
- If \mathcal{H} is not trivial, then we construct a proper substrategy $\mathcal{H}' \subset \mathcal{H}$.
- In finitely many steps the algorithm must stop (we do not need polynomial time here)

REDUCTION TO IDEAL FREE ALGEBRAS

Definition. Let $\mathbf{C} \leq \mathbf{D} \in \mathcal{V}$.

- C is a left-ideal of D, if $p_2(d, c, c) \in C$ for all $c \in C$ and $d \in D$.
- C is a **right-ideal** of **D**, if $p_2(c, c, d) \in C$ for all $c \in C$ and $d \in D$.

Lemma (Kiss, Valeriote). If \mathcal{H} is a nonempty (k - 1, k)-strategy, then it has a nonempty (k - 1, k)-substrategy \mathcal{H}' such that the algebras $\mathcal{H}'_x \in \mathcal{V}$ have no proper left or right-ideals.

Proof. Assume that $\mathbf{C} < \mathcal{H}_x$ is a proper left-ideal for some $x \in A$.

$$\mathcal{H}' = \{ f \in \mathcal{H} \mid \forall y, z \in \text{dom}(f) \; \exists f' \in \mathcal{H}_{\{x,y,z\}} \; f'|_{\{y,z\}} = f|_{\{y,z\}}, \; f'(x) \in C \}.$$

Easy cases: restriction and extension of $f \in \mathcal{H}'_{\{y,z\}}$ to $g \in \mathcal{H}'_{\{x,y,z\}}$. Interesting case: extension of $f \in \mathcal{H}'_{\{y,z\}}$ to $g \in \mathcal{H}'_{\{y,z,u\}}$.

REDUCTION TO CONGRUENCE CLASSES

Lemma. Let \mathcal{H} be a nontrivial (k-1,k)-strategy. Then there exists a nonempty set $X \subseteq A$ and maximal congruences $\vartheta_x \in Con(\mathcal{H}_x)$ for all $x \in X$ such that

(1) $\mathcal{H}_{x,y}/(\vartheta_x \times \vartheta_y)$ is the graph of an isomorphism $\tau_{x,y} : \mathcal{H}_x/\vartheta_x \to \mathcal{H}_y/\vartheta_y$ for all $x, y \in X$ of elements,

(2)
$$\tau_{x,y} \circ \tau_{y,z} = \tau_{x,z}$$
 for all $x, y, z \in X$,

(3)
$$\mathcal{H}_{x,y}/(\vartheta_x \times 0) = (\mathcal{H}_x/\vartheta_x) \times \mathcal{H}_y$$
 for any $x \in X$ and $y \in A \setminus X$.

Key step of the proof:

- $x \in X$, $\mathbf{U} = \mathcal{H}_x/\vartheta_x$ simple, has no proper ideal,
- $y \notin X$, $\mathbf{V} = \mathcal{H}_y$ has no proper ideal,
- $\mathbf{R} = \mathcal{H}_{x,y}/(\vartheta_x \times 0)$ is a subdirect product of **U** and **V**,
- \mathbf{R} is not the graph of a homomorphism of \mathbf{V} onto \mathbf{U} ,

In this case $\mathbf{R} = \mathbf{U} \times \mathbf{V}$.

Entering the right class of ϑ_x

Lemma. For every $x \in X$ choose a congruence class C_x of ϑ_x such that these correspond to each other via the $\tau_{x,y}$ isomorphism. Let \mathcal{H}' be the set of all functions $f \in \mathcal{H}$ that satisfy the following conditions:

(1) $f(x) \in C_x$ for all $x \in X \cap \text{dom}(f)$,

(2) f generates a minimal right-ideal in $\mathcal{H}_{\operatorname{dom}(f)}$.

Then \mathcal{H}' is a (k-1,k)-strategy.

Not hard: functions satisfying (2) are always form a strategy. Key step of the proof:

- $x \in X$, $\mathbf{U} = \mathcal{H}_x/\vartheta_x$ simple, has no proper ideal,
- $y, z \notin X, \mathbf{V} = \mathcal{H}_{y,z},$
- $\mathbf{R} = \mathcal{H}_{x,y,z}/(\vartheta_x \times 0 \times 0)$ is a subdirect product of **U** and **V**,
- $f \in R$, and f generates a minimal right-ideal $\mathbf{S} \leq \mathbf{R}$,

In this case $\mathbf{S} = \mathbf{U} \times \mathbf{S}|_{y,z}$.

OPEN PROBLEMS

- Is it true that every relational structure \mathbb{B} with CD(5) polymorphisms have bounded width?
- Is it true that every relational structure \mathbb{B} with CD(4) polymorphisms must have width (2, k) for some k?
- Is it true that every relational structure \mathbb{B} with a near-unanimity polymorphism (of any arity) must have width (2, k) for some k?
- Is it true that if \mathbb{B} has bounded width then it has width (2, k) for some k?
- Classify subdirect products $\mathbf{R} \leq \mathbf{U} \times \mathbf{V}$ of algebras in a congruence distributive variety where \mathbf{U} is simple and \mathbf{R} is not the graph of a homomorphism of \mathbf{V} onto \mathbf{U} .
- What is the smallest directed graph that has a weak near-unanimity polymorphism but does not have bounded width?
- Is there a directed graph that has bounded width but does not have a near-unanimity or totally symmetric idempotent polymorphism?

BOUNDED WIDTH AND ALGEBRAS

Definition. A finite algebra **B** has **bounded width** if for every finite set $\mathcal{R} \subset \text{Inv}(\mathbf{B})$ of relations there exist j, k such that $\mathbb{B} = (B; \mathcal{R})$ has width (j, k).

Theorem (Larose, Zádori, 2006). Every finite algebra in the variety generated by a bounded width algebra has bounded width.

Definition. A finite algebra **B** has **relational width** j if for every finite set $\mathcal{R} \subset \text{Inv}(\mathbf{B})$ of relations $\mathbb{B} = (B; \mathcal{R})$ has width (j, k) where k is the maximum of j+1 and the largest of the arities of the relations.

Definition. A finite algebra $\mathbf{B} = (B; \mathcal{F})$ has **bounded relational width** if it has relational width j for some integer j.

- Is it true that if \mathbf{B} has bounded width then it has bounded relational width?
- Is it true that if $\mathbf{B}, \mathbf{C} \in \mathcal{V}$ have bounded relational width, then so does $\mathbf{B} \times \mathbf{C}$?
- Is it true that if \mathbb{B} has width (2, k) then it has width (2, k') where k' is the maximum of 3 and the largest of the arities of the relations.